Transfer Drug Course

Instructor Manual

September 2006
Topics

• Ventilators
• Chest Tubes
• Foley Catheters
• NG/OG Tubes
• IV Infusion Pumps
• Fluid and Blood Therapy
• Thrombolytics
• Pharmacology
Ventilators

• Objectives
 – Identify the indications for ventilatory support
 – Identify the types of ventilators
 – Discuss the various ventilator controls and their corresponding settings
 – Define the four major types of ventilator delivery modes
 – Discuss ventilator complications with their associated remedies
Ventilators

• Objectives
 – Name the major complication associated with barotrauma and describe its treatment
 – Explain the rationale for using a ventilator versus a BVM
 – Defend the need to reassess the patient throughout transport with a ventilator
Indications for Ventilators

• Central nervous system dysfunctions
• Neuromuscular problems
• Musculoskeletal and pleural dysfunctions
• Dysfunctional airways
• Difficulties in gas exchange
Types of Ventilators

- Pressure cycled
- Time cycled
- Volume cycled
Ventilators

- Normal tidal volume is 5 ml/kg
- Most mechanical ventilators are set at 10 ml/kg
Ventilator Controls

• Fractional inspired oxygen
• Respiratory rate
• Tidal volume
• Peak flow
• Pressure limit
• Sensitivity
• Positive and expiratory pressure
• Sigh
Ventilator Modes

- Assist
- Control
- Assist-control
- Intermittent mandatory ventilation
Average Ventilator Settings

- **FiO₂:** 1.0
- **Tidal volume:** 10-15 ml/kg
- **Respiratory rate:** 10-15 breaths per minute
- **Inspiratory flow:** 40-60 liters/sec
- **Sensitivity:** -2 cm water
- **Sigh rate:** 1-2 times per minute
- **PEEP:** 0-5 cm water
Ventilator Precautions

- Use PEEP with caution in volume depleted patients
- Utilize a heater whenever possible
- Humidification of the oxygen is mandatory
- Suctioning must be performed when bronchi is auscultated.
Ventilator Complications

- Airway complications
 - Aspiration
 - Combativeness
 - Infection
- ET tube problems
 - Tracheal stenosis
 - Occlusion of the tube
- Mechanical problems
 - Leaks in the tubing
 - Disconnected tubing
 - Kinked tubing
 - Retained secretions
 - Bronchospasms
 - Coughing
 - Biting the ET tube
Barotrauma

• Increased pressure may weaken alveoli
• May lead to development of a tension pneumothorax
Chest Tubes

• Objectives
 – Identify the indications for a chest tube
 – Discuss the most serious potential problem of a chest tube and its related treatment
 – Explain the importance of drainage monitoring
 – Discuss what should be observed for in the drainage
 – State the procedure to re-establish chest tube patency
Chest Tubes

• Objectives (continued)
 – Discuss the four primary functions of a chest tube
 – Discuss the proper maintenance of chest tubes
 – Explain the significance of constant bubbling in the seal chamber
 – Defend the rationale for not routinely “milking” the chest tube
 – Explain the importance of maintaining a dependent loop
Chest Tubes

• Four primary functions
 – Act as a drain
 – Replace negative pressure
 – Provide a water seal
 – Prevent return into patient
Chest Tubes

• Chambers of the drainage system
 – Collection chamber
 – Water seal chamber
 – Suction control chamber
Chest Tubes

• Indications
 – Any event which significantly disrupts chest wall integrity
Maintenance of Chest Tubes

- Semi-Fowler’s position is ideal, if permitted
- Turn the patient every two hours, if permitted
- Frequently lift tubing to drain contents into collection chamber
- NEVER raise drainage system above level of patient’s chest
- Fluctuations in the water seal chamber are normal
- Avoid creating loops in the system
- Encourage patient to breathe deeply and to cough
- Watch for signs of subcutaneous emphysema
Problems with Chest Tubes

- Tension pneumothorax
- Chest tube removal
Drainage Monitoring

• Watch for:
 – Color
 – Consistency
 – Amount

• Any sudden changes in the amount of drainage, whether an increase or decrease, is a cause for concern.
Procedure for Re-establishing Tube Patency

• Reposition patient, if permitted
• Check for clots in the system
• Squeeze and release tubing to dislodge clot
• “Milking the tube” is the last resort
 – “Milking the tube” is to be avoided due to:
 • Excessive pressures
 • Rupture of the alveoli
 • Pleural leak
Foley Catheters

• Objectives
 – Identify the two components in assessing a foley catheter
 – Identify the three primary indications for the placement of a foley catheter
 – Define the normal urinary output
 – State the treatment for accidental removal of a foley catheter
 – State the treatment for a clotted catheter
 – Defend the rationale for not raising the collection bag above the level of the patient
 – Explain the reasoning for performing hourly, or sooner, recording of fluid input/output
Foley Catheters

• Indications
 – Urinary incontinence
 – Monitoring accurate fluid output
 – Inability to void

• Normal urinary output
 – 1 ml/kg/hr
Assessment of Foley Catheters

• Assess drainage
 – Color
 – Amount
 – Consistency

• Assess entrance site
 – Redness
 – Swelling
 – Warmth
 – Discharge
 – Pain
Problems with Foley Catheters

• Accidental removal
• Clotting
• Raising the collection bag above the level of the patient
• Sudden reduction in urine flow
• Moving the patient
• At least an hourly record of urine output needs to be kept
Accidental Removal

• Provide supportive treatment
• Apply loose dressing if severe bleeding present
• Document
Clotting of Catheter

• Maintain aseptic technique
• Flush with 50cc of sterile saline
• If resistance is encountered, Stop!
• Document procedure and time performed.
Nasogastric/Orogastric (NG/OG) Tubes

• Objectives
 – Recall the five indications for the placement of an NG/OG tube.
 – Explain some of the problems associated with NG/OG tubes.
 – Discuss what the drainage from a NG/OG tube should be assessed for.
 – Defend the need to avoid lying the patient supine when a NG/OG tube is in place.
Indications for NG/OG Tubes

- Short term enteral feeding
- Administer medications
- Gastic lavage and/or decompression
- Removal of pills
- Hemostasis in upper GI bleeding
Problems with NG/OG Tubes

- Vomiting
- Dehydration
- Aspiration pneumonia
Drainage Monitoring

• Check for:
 – Amount
 – Color
 – Consistency
 – Odor
Tips for NG/OG Tubes

• Avoid lying the patient flat, if possible.
• Irrigate tube before and after medication administration.
• Precise record of input and output.
• Irrigate tube every four hours, or sooner.
IV Infusion Pumps

• Objectives
 – Differentiate between an IV controller and an IV pump.
 – Recall the tips for using an IV controller.
 – Differentiate between a peristaltic pump and a piston pump.
 – Name the two primary indications for the use of an IV infusion pump.
 – Describe the two basic infusion pump controls.
 – Describe the three basic pump alarms.
 – Explain why being alert for extravasation is important with IV infusion pumps.
 – Explain the rationale for periodically moving the tubing in an IV controller.
 – Defend the reasoning for not using a peristaltic pump on “fragile” solutions.
 – Explain the rationale for evacuating air from the tubing and the drip chamber in infusion pumps.
 – Explain the rationale for setting the volume control 50cc less than the volume in the bag.
IV Controllers

- Regulates gravity flow
- Not as accurate as infusion pumps
Tips for the Use of IV Controllers

• Drip chamber must be 30 inches above the infusion site.
• Drip chamber no more than half full.
• Liquid should not be clinging to the sides of the chamber.
• Periodically move the tubing to prevent damage.
IV Infusion Pumps

• Peristaltic
• Piston Driven

• Indications
 – Administration of a specific amount of agent
 – Prevention of fluid overload

• Pump Controls
 – Flow rate
 – Volume settings

• Pump alarms
 – No flow
 – High pressure occlusion
 – Volume infused
Tips for the Use of IV Infusion Pumps

• Follow manufacturer’s instructions
• Evacuate all air out of the system
• Clamp tubing when opening door or changing IV
• Prevent jarring unit
• Completely fill drip chamber
• Periodically move tubing (peristaltic)
• Watch for infiltration
• Set volume control for 50cc less than volume in bag
Fluid and Blood Therapy

• Objectives
 – List the indications for crystalloid therapy
 – List the indications for colloid therapy
 – Recognize examples of the following
 • Hypertonic
 • Isotonic
 • Hypotonic
 – Recognize examples of colloids
 – List the indications for parenteral therapy
 – Define TPN
Fluid and Blood Therapy

• Objectives (continued)
 – List the four indications for blood therapy
 – Identify commonly used blood products
 – Identify the four components that blood must be checked for prior to administration
 – State the proper procedure to administer blood
 – List the three major types of reactions associated with blood product administration
 – Describe the proper patient management for the three major types of blood infusion reactions
 – Defend the need to watch for signs of fluid overload with colloidal administration
 – Explain the rationale for using a sterile technique when changing solution bags of TPN
 – Defend the reason why blood is initially infused slowly
Indications for Crystalloid Therapy

• Rehydration
• Replenish Na and Cl
• Provide energy
Solutions

• Isotonic
 – Ringer’s
 – Lactated Ringer’s
 – 2.5% Dextrose/Lactated Ringer’s
 – .9% Normal Saline

• Hypertonic
 – 10% Dextrose
 – 20% Dextrose
 – 50% Dextrose
 – 3% Saline
 – 5% Saline
 – 5% Dextrose/.45% Saline
 – 5% Dextrose/.9% Normal Saline
 – 5% Dextrose/Lactated Ringer’s

• Hypotonic
 – 2.5% Dextrose
 – 5% Dextrose
 – .45% Saline
Crystalloid Precautions

• Hypertonic solutions should be administered slowly
• Monitor flow rate to prevent overload
Indications for Colloid Administration

• Rapid replacement of intravascular fluid
• Hypotension
• Correct albumin and protein levels
Colloid Examples

- 5% Albumin
- 25% Albumin
- Plasma protein fraction
Colloid Precautions

• Due to the extreme osmotic gradient be alert for signs of fluid overload
Indications for Parenteral Therapy

• Provide calories
• Spare the body’s protein
• Maintenance of nutritional status
Parenteral Therapy

• Examples
 – Amino acids
 – Fat emulsions
 – TPN
Parenteral Therapy Precautions

- Fat emulsions are incompatible with electrolytes
- Adverse reactions to fat emulsion therapy:
 - Nausea and vomiting
 - Headache
 - Dyspnea
 - Allergic reactions
- Avoid using an in-line filter for fat administration
- Use an IV pump to administer TPN
- Use a sterile technique when changing IV bags
- Watch for signs of glucose intolerance when administering TPN
Blood Therapy

• Indications
 – Decreased hemoglobin
 – Decreased hematocrit
 – Large volume/blood loss
 – To increase oxygen carrying capacity
Blood Therapy

• Types of Blood Products
 – Packed red blood cells
 – Platelets
 – Fresh frozen plasma
 – Whole blood
Blood Therapy

• Blood must be checked for
 – The right patient
 – The right blood product
 – The right blood type
 – Expiration date
Blood Therapy

• Points to consider
 – 18 gauge needle or larger
 – Flush tubing with normal saline
 – Use a blood administration set
 – Never “piggyback” blood with anything else
 – Start infusion slowly
Blood Therapy - Infusion

• No more than 1 drop every 5 seconds initially.
• 5-10 ml of blood required to initiate a reaction.
• Increase rate in 15 minutes if no reaction.
• Complete infusion in 1 to 1 ½ hours.
• Blood can remain at room temperature for four hours.

• Never reuse the same administration set if further units are required.
• Stop infusion immediately if a reaction occurs.
• Save the blood.
• Avoid pressure infusing blood.
Types of Transfusion Reactions

- Circulatory overload
- Febrile reaction
- Allergic reaction
Circulatory Overload

- **Signs and Symptoms**
 - Dyspnea, coughing, and cyanosis
 - Headache, sudden anxiety
 - Increase in systolic blood pressure
 - JVD
 - Pulmonary edema followed by peripheral edema

- **Treatment**
 - Stop the infusion
 - IV normal saline at TKO
 - Place patient upright
 - Oxygen
 - Consider
 - Diuretics
 - Analgesics
 - Aminophylline
Febrile Reaction

- Most common reaction with blood transfusions
- Caused by immune reaction
- Usually occurs within 30 minutes
Febrile Reaction

• Signs and Symptoms
 – Elevated temperature
 – Chills
 – Stable vital signs

• Treatment
 – Stop the infusion
 – Change the tubing
 – Maintain venous access
 – Aspirin or Tylenol for fever
 – Document
 • Episode
 • Time
 • Amount of blood
 • Treatment performed
Allergic Reaction

• More common in patients with history of receiving multiple transfusions.
• More common in patients with a history of allergies.
• Reactions may be grouped into two classifications, mild and severe.
Mild Allergic Reaction

• Signs and Symptoms
 – Aching joints
 – Urticaria
 – Mild fever

• Management
 – Stop the infusion and change tubing
 – Benadryl
 – Maintain IV access
 – Aspirin or Tylenol for fever
Severe Allergic Reaction

- **Signs and Symptoms**
 - Occurs after a small amount has been administered
 - Absence of fever
 - Wheezing and/or coughing
 - Tracheal edema
 - Respiratory distress
 - GI complaints
 - Anaphylaxis

- **Management**
 - Stop the infusion and change tubing
 - IV fluids to support BP
 - Treat as for anaphylaxis
Thrombolytics Objectives

• Discuss the purpose of thrombolytic therapy
• List the five types of thrombolytic agents with their respective doses
• List the potential side effects of thrombolytics
• Explain the purpose of the five adjunctive pharmacologic agents during thrombolytic therapy
• Describe the proper methods for administering the five thrombolytic agents
• Identify the proper dosage and potential side effects of the seven pharmacologic agents during thrombolytic therapy
Thrombolytics Objectives

- Describe the pathophysiology involved in an acute myocardial infarction
- Recall that thrombolytic agents may be used for other thrombic emergencies
- State the sequential management to handle bleeding problems
- Explain the importance of handling a thrombolytic patient gently
- Explain the rationale for dividing the contraindications to thrombolytics into potential and absolute
- Defend the reasons for adjunctive pharmacologic therapy
Pathophysiology of an AMI

• Damage to the interior of a blood vessel
• Platelets adhere to the damaged area
• Serotonin, ADP, and thromboxananes are released
• Clot increases in size
• Occlusion of the artery produces an AMI
Transport Considerations

- Reperfusion arrhythmias usually occur within 1 ½ hours from onset of treatment
- Watch for development of bundle branch blocks
Types of Thrombolytic Agents

- **Alteplase**
 - Dosage - 100 mg IV over 3 hours
 - 60mg in the first hour
 - 6-10mg is bolused over 1-2 minutes
 - Remaining 40mg infused at 20 mg/hr

- **Anistreplase**
 - Dosage – 30 units over 2-5 minutes

- **Streptokinase**
 - Dosage – 140,000 units followed by maintenance infusion
 - Loading dose is 20,000 units
 - Maintenance infusion is 2,000 IU/min over 1 hour

- **Urokinase**
 - Dosage
 - 6,000 IU/min for up to 2 hours
 - Typical dose is 500,000 IU total

- **Reteplase**
 - Dosage
 - Double bolus of 10 U + 10 U given over 2 minutes
 - Second bolus is administered in 30 minutes if no adverse reactions have occurred
Potential Contraindications

• Absolute Contraindications
 – Active internal bleeding
 – History of CVA, intracranial neoplasm, AV malformations, or aneurysm
 – Recent intracranial or intraspinal surgery or trauma
 – Past or present bleeding disorder
 – Uncontrolled hypertension
 – Pregnancy

• Relative Contraindications
 – Hemorrhagic ophthalmic conditions
 – Prolonged CPR
 – Recent surgery at a non-compressible site
 – Documented cerebrovascular disease
 – Recent GI or GU bleeding
 – Liver dysfunction
 – Physically advanced age
 – Oral anticoagulants
 – Previous thrombolytic therapy
 – Recent head trauma
 – Recent surgery
 – Recent trauma
Side Effects

- Anaphylaxis
- Hemorrhage
Bleeding Management

• Avoid IM Injections
• Avoid unnecessary handling of patient
• Pad side rails of cot
• Reduce venipunctures to a minimum
• Apply direct pressure to active bleeding sites for 15 minutes
• Keep involved extremity straight
• Watch for internal hemorrhage
• Avoid nasotracheal intubation and NG tubes
Sequential Bleeding Management

• Apply manual pressure to bleeding site
• Administer crystalloid volume replacement
• Interrupt anticoagulant therapy
• Interrupt thrombolytic therapy
Adjunctive Pharmacologic Agents

- Nitroglycerin
- Lidocaine
- Heparin
- Aspirin
- Beta Blockers
- Morphine Sulfate
- Oxygen
Nitroglyercin

• Effects
 – Smooth muscle relaxant which decreases the demand of oxygen while at the same time increasing supply of the same.

• Dosage
 – IV form typically initiated at 10-20 mcg/min and titrated to effect.

• Contraindications
 – Hypersensitivity to agent
 – Hypotension

• Side effects
 – Headache
 – Orthostatic hypotension
 – Tachycardia
 – Flushing
 – Palpitation
 – Nausea and vomiting
Lidocaine

• Effects
 – Class IB antiarrhythmic
 – Decreases excitability and conduction
 – Increases the fibrillation threshold
 – Works only on the ischemic portions of the myocardium

• Dosage
 – 1-1.5 mg/kg IV bolus
 – Maximum bolus is 3 mg/kg
 – 4:1 infusion at a rate of 2-4 mg/min

• Contraindications
 – Hypersensitivity to the agent
 – Heart blocks
 – Sick sinus syndrome

• Side effects
 – Seizures
 – Confusion
 – Tremor
 – Hypotension
 – Bradycardia
 – Worsened arrhythmias
Heparin

• Effects
 – Inhibits the formation of new clots by deactivating thrombin

• Dosage
 – Patient specific
 – Typical dosing is 5,000 to 7,500 units IV bolus
 – Infusion rate of 1,000 units/hr

• Contraindications
 – Coagulation disorders
 – Ulcers
 – Recent surgery
 – Active bleeding
 – Hypersensitivity to the agent

• Side effects
 – Hemorrhage
 – Increased clotting times
Aspirin

• Effects
 – Blocks prostaglandin formation which decreases production of thromboxanes

• Dosage
 – 240 mg PO

• Contraindications
 – Known hypersensitivity to the drug
 – Bleeding disorders
 – Use with caution in patients with known hypersensitivity to NSAIDS

• Side effects
 – Tinnitus
 – Dizziness
 – GI disorders
Beta Blockers

• Effects
 – Decreases the workload on the heart
 – Reduces automaticity of the heart

• Dosage (Metoprolol)
 – 5 mg IV every 5 minutes
 – Total of three doses
 – 25-50 mg PO every 6 hours (after IV dose)

• Contraindications
 – Known hypersensitivity to the drug
 – Heart rate <45 BPM
 – 2nd or 3rd degree heart block
 – PR interval >.24 seconds
 – Systolic BP <100 mmHg
 – Moderate to severe cardiac failure

• Side effects
 – Fatigue
 – Dizziness
 – Bradycardia
 – Hypotension
Morphine Sulfate

• Effects
 – Vasodilator
 – CNS depressant
 – Potent analgesic

• Dosage
 – 1-3 mg every 5 minutes, titrate to effect

• Contraindications
 – Known hypersensitivity
 – Hypotension

• Side effects
 – Respiratory depression
 – Hypotension
 – Lightheadedness
Oxygen

• Effects
 – Elevates the arterial pressure of oxygen increasing the perfusion to the cells

• Dosage
 – AHA recommends beginning at 4 L/min via nasal cannual and increasing level until pulse oximetry is >97%

• Contraindications
 – There are no contraindications to the administration of oxygen in the setting of an acute myocardial infarction

• No side effects